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Velocity width of the resonant domain in wave-patrticle interaction
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Wave-particle interaction is a ubiquitous physical mechanism exhibiting locality in velocity space. A single-
wave Hamiltonian provides a rich model by which to study the self-consistent interaction between one elec-
trostatic wave andll quasiresonant particles. For the simplest nonintegrable Hamiltonian coupling two particles
to one wave, we analytically derive the particle velocity borders separating quasi-integrable motions from
chaotic ones. These estimates are fully retrieved through computation of the largest Lyapunov exponent. For
the largeN particle self-consistent case, we numerically investigate the localization of stochasticity in velocity
space and test a qualitative estimate of the borders of chaos.

DOI: 10.1103/PhysRevE.65.016411 PACS nunier52.25.Gj, 95.10.Fh, 05.45.Pq, 05.6%
I. PHYSICAL CONTEXT AND INTRODUCTION locities are roughly smaller than the thermal velocionly
TO THE PROBLEM participate in the dynamics via a small subset of collective

modes, the Langmuiflong-wavelengthmodes of longitudi-
Plasmas are, contrary to ordinary gases, composed &Rl oscillation around their center guide positions. These
chargedparticles. They are thus sensitive to electromagnetiégnodes are described by action-angle variablesé) with
fields and, moreover, behave similarly to sources generating<j<M for the M waves. In the absence of resonant par-
their own self-consistent fields. These fields may be Fourieficles, they oscillate with constant angular frequencies
decomposed into waves that propagate at specific phase v@&é;/dt=wg;, which, according to the Bohm-Gross disper-
locities and interact with the so-called resonant particlession relation[5], are approximately equal to the plasma fre-
whose velocities are close to the phase velocities. This pheéiuency wp for long-wavelength mode$4]. These waves
nomenon is callesvave-particle interactiorisee, e.g[1]). It~ strongly interact with those plasma particles in the tails of
is ubiquitous in hot plasma physics and plays a major role irthe distribution function having velocitiesclose tow; /kK; .
controlled thermonuclear fusion physics, in laser plasma inThe coupling is controlled by the small parametgrthat
teraction, in astrophysics, as well as in semiconductors andenotes the ratio of the tail density over the bulk plasma
electronic device§2]. One of its features is that it exhibits a density. The dynamics dfl identical quasiresonant particles
locality in the velocity space: since all plasma charged parimoving on the interval of length with periodic boundary
ticles do not interact in the same manner with the selfconditions, with unit mass and charge, and, respectively, po-
consistent fields, a fluid description would fail to describe itsition x, and momentunp,, interacting withM waves with
and a kinetic description is required. To illustrate this, let uswave numbersk;=j2=/L, derives then from the Hamil-
consider Langmuir wave-particle interaction. This is the phetonian
nomenon describing thécollisionles$ interaction of long- ) v
wavelength electrostatic waves with the resonant particles, o] B
namely, electrons whose velocities are close to the phase HZE §+2 wojlj—N 1/22 E V2l
velocities of the modes. lons having masses far larger than
electron masses are assumed fixed and provide a neutralizing X cogkjx;— ;). 1)
background. The usual description of Langmuir wave-
particle interaction involves then the coupled kinetic set of However, the discrimination between quasiresonant “rel-
Vlasov-Poisson equations for the electron distribution func-evant” particles and particles that should be included in the
tion. In this framework, the locality of wave-particle interac- plasma bulk, because they participate only marginally in the
tion is evidenced for instance by Landau damping. As emwave-particle interaction, is presently rather loose and quali-
phasized mathematically by Landau’s rigorous calculatiortative. For the simplest and most paradigmatic case of one
[3], this phenomenon is governed by resonant particles.  single wave, it remains to determine in this self-consistent
In order to describe precisely this Langmuir wave-particlemodel, a picture of the various amounts of stochasticity in
interaction and take into account these locality properties, athe velocity space and to try to estimate the width of the
alternative N-body Hamiltonian model has been proposedstochastic sea developing around the wave resonance. The
[4]. This model results from a reduction of the dynamics ofstudy of the localization of chaos in the phase space is also
the whole plasma. Basically, the bulk particleshose ve- crucial to determining which particles should be taken into
account if one wishes to derive relevant Gibbs statistical me-
chanics prediction$6] (that agree with temporal averages
*Email address: firpo@newsup.univ-mrs.fr due to a sufficient mixing in phase spac®ur aim in this
"Email address: doveil@newsup.univ-mrs.fr paper is to bring a semiquantitative resolve to this issue.
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Il. THE SINGLE-WAVE HAMILTONIAN wave-particle interaction and we shall investigate how this
particular form of coupling affects wave-particle locality
properties.
In this new form(6), it is clear that the self-consistent
N interaction of two particles and one wave is the simplest
+wol —\271/IN Y, cogx,— 6). (2)  nonintegrable situation for the model. We shall first study in
I=1 this case how self-consistency acts on velocity locality. This
) ) ) case will provide a good illustration of how a velocity-
In order to f|>_< notat_lons, we put th_e wave number;j aﬂ_ dependent coupling affects the localization of chaos in veloc-
and the spatial period dt=2m. This single-wave Hamil- i 'space. We shall see in Sec. IV that this study can, with
tonian was first formulated as a simplified model to treat thesome restrictions, be relevant to the general problem of the
instability due to a weak cold electron beam in a plasmajnieraction of a large numbeN of particles with a single
assuming a fixed ionic neutralizing backgrouf®8]. Yet  \yaye. In that case, a numerical study is appropriate to esti-

rec_ently, differe_nt studies have extended the regime of appligyate the velocity domain in which particles play an active
cation of the single-wave model to a much larger class ofgje in wave-particle interaction.

instabilities[9], derived it in a generic manner from different
contextq 10], or proved it could model various physical phe-
nomena (e.g., Compton free-electron laser amplification
[11]). There exists a large variety of similar Hamiltonian
models(for instance, see referen¢#2], for the description A. Local reduction to a one-and-a-half degrees of freedom

Let us introduce the self-consistent Hamiltonian coupling
N particles and one wav@vith a unit wave number

|2,

N
H=2,
I=1

Ill. VELOCITY BORDERS OF CHAOS FOR THE
COUPLING OF TWO PARTICLES AND ONE WAVE

of Alfvén-wave particle interaction Hamiltonian system
lt. is useful to write down the equation of motion of any The effective Hamiltonian in the reference frame of the
particlel as .
wave is
X,=—27l/Nsin(x,— 6). (3) p? p2

H(p,q)= = + = — V7(P—p1— p,) Y4 cosq, +cosq,),
That is the equation of a pendulum evolving in the self- 2 2 o2 ! 2

consistent field with strengtll2»I/N and angle# (whose (@)

:irlrézfral evolutions depend on the evolution of all the PaAwhere one recalls thag is a small parameter. Therefore, we

. . . shall consider the system as close to integrability. We denote
A Galilean transformation enables us to put the system in 2 2
S by Ho(p1.p2) =p1/2+p5/2 the energy of the unperturbed
the reference frame of the wave. Actually, considering the
, , — N — system and use the method developed by Escande and
generating functionFy(x,6,p,1,t)=2=;(x—wot)P1+ (6  Doveil [13,14 to show that the system is locally reducible to
—wot) | + 3L wex—Nw§t/2, the new Hamiltonian be- a one-and-a-half degrees of freedom Hamiltonian system.
comes This reduction operates in the vicinity of a reference pair
N N of actions that we denote by, =(py,,py ). If the system
1, = — — were integrabléwithout the perturbative potential parboth
> P N2nlIN2, cogx—6). particles would move ballistically. When the perturbation is
(4) on, the effective dynamics can be proved to be reducible to
one-and-a-half degrees of freedom as long as the velocities
It is easy to check that the total momentum of the two particles do not depart too much frqm, and
N p»r, Which will be the case if they are far enough from the
— - — wave resonance that their motion is only slightly affected by
P=|Zl Pt ) the wave. The key point explaining the local reduction of the

dynamics to one-and-a-half degrees of freedom is that, in the
is conserved by the dynamics obtained from E4). This  Vicinity of p,, the energy circle Ho(py,,p2r)=E;

enables us to define a new generatoFaéx, 6,p,P)=Pg Ho(P1.p2) IS similar to a parabolic branch. In order to
SN *—8). The new coordinates coniugated to the move the system to the reference frame with origjnori-
22— 0). Jug ented according to the principal axes of the parabola, with

p’s are given byq=adF,/dp;=x—6. The final Hamil-  yvectorsQ, andr defined through
tonian, emphasizing that onlf degrees of freedom are ef-
P1

fective, is given in the compact form dHo
" op Par

HpTx B =H+ L
(p1 1X1 )_ W

=1

p|2 N 172 p=p,
H(p,a)=2>, 7—v2n/N(P—|Zl p|) cosq|. (6)

=1

andr-Q,=0 with |p||=]r[|=(2E,)*? so that

The wave-patrticle self-consistency manifests itself through a D
coupling potential whose strength depends, in a mean-field r=( 2r )
way, on all particle velocities. This interaction is typical of

9
~Par ( )
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one has to operate one translation in momentum space, fol-
lowed by one rotation of the initial Cartesian reference
frame, that is, a unitary transform. This defines a canonical
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JdF 4

H"(q",p" ,t") =H+
1'MF1 "

transform of the original variablegp(q) towards the new
variables p',q’) with the generating function

F(qrp,):q'(pr+pir+péﬂr)- (10

This gives

JF

:ﬁzpr""pir"'péﬂrv

p

JF
apy

!

a.= =P2rd1— P12,

oF
Ip3

!

a>= =P1rdst P2rQ2-

The new Hamiltonian then reads

H(p'.q")=E,+E(pi?+2pj+p3>) — Vo[ P—py,
X (1= pi+ps)—pa(l+pi+py)]H2

CO{ ) +CO{ P01 — erQ2)

2E,

Locally, that is, in the vicinity of the reference actipp, one
can neglecp,? compared to B}, as well as* p; + p, com-
pared to 1 in the potential strength term. Under these cond
tions, g, depends linearly on time, since its derivatiiy’gis
then equal to E,, that is to a constant. Therefore, on the
restricted phase spac® associated with the first particle,
the dynamics corresponds to a one-and-a-half degrees

P20+ P1:02

x 2E,

freedom Hamiltonian one, that is formally the dynamics ex-

hibited by the two-wave paradigmatic Hamiltonian defined
in Ref. [14]. Actually, by changing time origin througt{
=t—ty, one obtaingy,=2E,t". Moreover, considering the
canonical transform defined by the generator

! n

pl:ﬁ_qi_ZEr P1-

1
Fa(d;.p})= 5 iPi— (E+2Eppt” (1D
r
gives

, OF3 1

1:_,, 2E ql!
Jp1 r
&F3_ 1

The expression of the new Hamiltonian is then

n2_

= 28 P¥~Vn(P=py—p2)*?

X[cog pyrq;+ part”)

+cog Py 0] —part”)].

A change of scaldnoncanonical transformenables us to
obtain the normalized expression of the paradigm Hamil-
tonian with two waves. Actually, putting,:=p’/(2E,), the
couple @7,y1) evolves then inS; according to

oK

"

1:(9_)’1 (12
and
. oK 13
Yi=——,
aq;
with
1 \/7](5_ pl - p2 )1/2 " "
K=5y5- SE LooS P2l +pyt”)
+cog p1,qf— part”)]. (14

One identifies here two resonances whose locations are given
by the condition of stationary phase: the first one is centered
on the momentum—p;,/p,, (phase velocity of the first
wave if it is along and the second one gm, /p;, (phase
velocity of the second wave fif it is alope

B. Stochasticity in the reduced system

of | et us now recall the definition of Chirikov stochasticity
parameters [15]. It is defined by the ratio of the sun;

+ &, of the maximum half widths of two neighboring reso-
nances over the distance in velocity spadeetween both
resonances ib;. Whens<1, the two resonances are well
separated from each other by a layer of invariant curves
[KoI'mogorov-Arnol'd-Moser(KAM ) tori]. According to the
initial conditions, a particle in mode{14) will either be
trapped in the first or second wave or move on a passing
KAM torus. The qualitative overlapping criterisz 1, pro-
posed by Chiriko{15], corresponds to the onset of strong
chaos. A treatment based on a renormalization group theory
[13] has enabled us to fix a quantitative threshaid
roughly equal to 0.7, for the disappearance of the last KAM
torus between the resonances that marks the onset of this
large-scale chaos.

For Eq. (14), one gets &8;,=6,=27"(P—py,
—po)Y42E,) "2 In addition, the two resonances are
separated in the velocity space &, by a lengthl
=|pa /P +P1r /P2|. The stochasticity parameter is there-
fore equal to
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Par transformation 1, ,po,)— (P2, ,P1r), that is, the simple in-
1k , version of the two particles, but that it is not invariant by the
h s transformationsp,,— —p4, and p,,— —p,, hor by their

7 composition. On the first bisectrix, there is actually a smaller
0.8 N 7 velocity range of strong chaos for positive than for negative

. 7 velocity values forP positive. According to expressidib),
0.6 4 the Chirikov parameter should diverge g5 (,p2;)— (0,0).
P As Eqg. (15 is independent of particle position, this simply
RN signals the existence of the resonance hyperbolic points at
: zero momentum. These dominate the stochastic behavior of
the system on the line of zero momentum.
. It is important to note that this reduction of dynamics is
only locally valid: with given reference momenta( ,p,;)
== Pqy at timet, this reduction will typically be valid up to some
04 06 08 1 time to+ 7 at which the hypothesip,°<2p, breaks down.
At that time, a new reduction treatment could be made for a
new reference couple. This method has been used by Es-
candeet al. [16] for a nearest-neighbors Hamiltonian model
g -0.4 of rotators. They showed that the existence of at least one
such 1.5 degrees of freedom’s active resonance was suffi-
cient to sweep phase space and to provide good relaxation
properties of the microscopic microcanonical dynamics to-
wards Gibbs equilibrium.

FIG. 1. Curves of isostochasticity(p;, ,p,;) =0.7 (bold line)
and s(py, ,p2) = 1.5 (thin line) for the approximated system cou-
pling two particles to one wave. The integrability ling,+ po,
=P has been drawn. Valueg=2.56<10"* and P=1 have been

used.
C. Largest Lyapunov exponent

1Py Pal The largest Lyapunov expone(itLE) [17] measures the
LS. average degree of chaoticity exhibited by a generic noninte-
2 2\3/2 . .
(Pt P2) grable Hamiltonian system.
(19 Consider the equations of motion associated with a given
N-dimensional dynamical system defined as

S=S(P1y,P2r) = 4771/4(5_ P1r— I)Zr)ll4

Figure 1 represents different curves satisfyis(@, ,p2,) ) .

=const. The external thick curve corresponds to the critical xi=X'(xt ..oxY), (16)
values;.~0.7. Along the bisectrix, the chaos increases as one

gets closer to the origin. It is important to note that thiswhere I<i<N, and such that(t=0)=X,, and consider the
expression does not involve the positions of the particles bugvolution of a phase-space point initially arbitrarily close by
only their reference velocities, as a consequence of théXo to the latter one. Then linearizin@6) around the refer-

Hamiltonian form(6). ence trajectoryg(t) gives the usual tangent equations
Let us now interpret this figure by starting from a situa- . i
tion of quasi-integrability forH. It is obvious thatP—py, 0% =i Xr(1) ] OX, (17)

—p2r must be positive, and that around the reference con- h theJ 01 stand for the Jacobi trix i
figuration P—py, — p,, =0, the motion of both particles is where theJi[xs(t)] stand for the Jacobian matrix time-

quasiballistic: this fixes the “integrability border” drawn in dependent elements related to Hie

Fig. 1. In this extreme case, the dynamics will be even re- Then the limit

ducible to a one single degree of freeddne., integrablg 1 |ox

system. It is clear that if one provides initially one particle lim—=1n—— (18
with a large momentump, <P), then the width of wave e e

resonance“cat’s eye”) will be small: the reference reso-

nance half width will actually be @g,=27Y4P—py,
—p2r) Y4 and will be small compared tp,, . The motion of

is proved to existby the Oseledec theorgrand is, by defi-
nition, equal to the largest Lyapunov exponent, denated
r . X O . whose value depends on the ergodic component to which the
the first particle will then almost coincide with a KAM tOIUS. i iia) reference condition belongs. Since generally the Jaco-

Also, if one moves along the first separatrix in the oppositeDian matrices(17) at different times do not commute, one

direction, starting from reference momenta having Iargecannot find a common system of eigenvectors, so that usual

(compared td®) negative values, thepy, is large in front of  estimations of the LLE rely on numerical simulations that
the trapping angular frequenay”4(P—p,,— p,,) Y4 thatis, integrate Eq(17) around given reference trajectories, with a
of order Y4 —p,,) Y4 This situation corresponds also to an few remarkable analytical estimatiofss].

almost integrable motion of the particles. It is interesting to For our purpose, we shall only compute the positive
note that Eq(15) is obviously symmetric with respect to the Lyapunov exponent associated with the effective one-and-a-
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half degrees of freedom dynamics appearing in By.and

use the method developed by Habib and Ryh@|. This
method based on the use of symplectic matrices only re-
quires that the linearized dynamics be Hamiltonian and
avoids reorthonormalization processes. Linearizing the equa-
tion of motion (3) of a test particle around a reference tra-
jectory xg(t) yields the system

x=13p, (19
S5p=—&B21(t)cod xg(t)— 6(t)]Sx.
~ ~ P10=P2o0
These equations derive from a quadratic Hamiltonian with 0-2 04
1.5 degrees of freedom of the formH(dp,éx,t) FIG. 2. Largest Lyapunov exponent for the system coupling two
:=1/2(S110X%+ S1,0X 5P+ Sp10P X+ Sp0p?)  With S,=5y; particles to one wave. Arrows mark the velocities corresponding to
=0 and the value of the stochasticig=0.55 as calculated from E¢L5) on

the bisectrix, i.e., withp,, =p,, .

S~ e V20RO = 0L half degrees of freedom Hamiltoniap,?<2p,, remains
Sy,=1. valid only during shorter and shorter periods of time. Figure
2 presents the LLE, averaged over 100 different initial posi-
In order to obtain\ 4, it is sufficient to solve instead of Egs. tions for both particles, computed through E(®0) and(21)

position and initial velocitypo=p1o=P2o. We can check
du 1 that the integrable initial conditiop,=P/2 leads to a van-
i~ 2 (S22~ su)cosa, ishing LLE. Moreover, we observe that the behavior of the
LLE dramatically changes g% approaches the origin, rais-
da ing from zero to a finite value, for velocity values on the first
ot Sut S22 (S s;p)sina cothu (20)  bisectrix intersecting the isostochasticity curve marking the

strong stochasticity threshold in Fig. 1. The use of the LLE
. ) . _ provides a new signature of the nature of the chaos experi-
simultaneously with the reference trajectog(t), wave in-  gnceq by the system. One observes that, consistently with
tensity (1), and phas&(t) that are extracted from the par- rig 1 Fig. 2 is not symmetric with respect to the origin:
allel fourth-order symplectic integratidi20] of the full self- since P has been taken positive, strong chaos arises for a

consistent Hamiltonian syste(®). : : ;
The LLE is then given by larger velocity modulus at the left than at the right of Fig. 2.

(M) IV. LOCALITY OF THE INTERACTION OF N PARTICLES
LM
Ay=lim - (21) WITH ONE WAVE

t—oo

A. Rough estimate of the velocity borders of stochasticity

Let us note that, in numerical simulations, we shall obviously The two-particle case cannot emphasize the mean-field
only compute finite{large-time LLE. nature of the self-consistent potential. Wheris large, one
Through the LLE, which is an indicator of the chaos ex-¢an still try to isolate two degrees of freed.om among the
perienced by microscopic dynamics, we look for a dynamicapegrees of freedom of the full system. In this matter, suppose
signature of the onset of strong stochasticity in the systenltha‘_t theseN ﬁa”']?les have a Iz?arge etr:ough extension !3 ve-
coupling two particles and one wave. For the initial condi-'°¢%Y ("i" they Ekr)m adwar,fn e_a)ln at one cfan cor:m er
tions, we restrict ourselves to the symmetric case where bofiMong t ij two “boundary” particles remote from the reso-
particles have initially the same velocify=po= P20 With nance cat's eye. Their motion will therefore. be qlmost inte-
arbitrary positions. This corresponds to investigating the Stograble. Qne can try to esﬂmate the velocity width of th?
chasticity along the bisectrip;, = p,, in Fig. 1. Actually, stochastic domain, surroundlr_lg the wave resonance, by using
assume first that the initial velocity of the particles is farthe approach developed previously, in a rigorous manner, for

away from the origin. Then the motion of the particles will the two-particle case.

be almost ballistic and the local reduction to Etd) will be h Let us assfurrr]le that, within sgme time [nter[/%l;goJr 7],
valid for almost infinite time withp,=ps, = po. This will the energy of the system may be approximated by

correspond to a vanishing LLE calculated for the reference N 2
trajectory given by an initial arbitrary position and an initial H(p.q)=hy AP1.P2.01.02.t0) + 2 |5 — \/
velocity po=p1o=P2o. As the initial velocity of both par- ’ =3]2 N

ticles gets closer to the origin, we expect a continuous in- N 12
crease of chaos in the system so that the condition of reduc- 5.

: ; - o x| P— —Pp1(tg) —po(t cos
tion, around this reference initial condition, to a one-and-a- |=23 Pi=Pato) =Pzl 0)) a
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with
2 2
P1 P2 2y
hl,Z(pllp2!q1,q2,to):7+7_ N(

112
ol pz) (cosq;+cosqy).

At t=t,, this separation is exact. This separation will be
valid, during a sufficiently long rtime interval, provided the
variations of the wave amplitudéor, equivalently, of the
mean-field velocity couplingare small, which is consistent
with an almost integrable state of the system. As before, in
order that the dynamics generated oy, be locally reduc-
ible to one-and-a-half degrees of freedom, the potential en-
ergy term has to be a small pertubation of the kinetic term.
We need here the assumption of a sufficiently warm beam

PHYSICAL REVIEW E65 016411

ensuring the existence of at least two particles far enough FIG. 3. Curve of isostochasticitg(x,y)=0.7 for the reduced
away from the cat's eye. Then the previous procedure appligdUasi-integrable system couplimgparticles to one wave.

and gives the stochasticity parameter

277 1/4 o N 1/4
S(to):"r(w) (P_Zs Pi(to) = P1r— Par

|p1rp2r|

(p%,+p3) %

In the mean-field larg®l limit, the wave intensity is of order
N [21] so that, according to Ed5), the following inequali-

ties can be easily satisfied:

(22

of the energy representation, this means that there should be
no particle undergoing strong chaos outside as;-8vidth
domain around the origin.

B. Numerical cartography of the stochasticity in velocity space

We numerically investigate the local stochasticity in ve-
locity space that develops from an initially almost integrable
state. At initial time, particles are distributed on velocity
beams, uniformly in space, with a flat velocity distribution
function, i.e., we start from water-bag initial conditions and
the wave has a finite amplitude such that the initial resonance

N 1/4 N cat's eye has a half width equal t@g,. More precisely, we
(277/N)1’4( P—> pito)]| <lpulilpxl<P—2 pi(to). initially distribute the particles according to the distribution
=3 =3 function
(23)

One can then define the trapping frequency as

N 1/4

E‘Z Pi(to) =P1r—Par|

=3

wg(to)=(27/N)**

U(4mA) if —A<v<A

f =
o(x.v) 0 otherwise,

(26)

where the velocity half width\ is equal to about 12z in
the simulations we present. Actually, in order to measure the

(24) extension of stochasticity in the velocity space, one has to

chooseA sufficiently large compared to the resonance half

and one obtains an expression of the stochasticity parametesidth. As the number of particles is finite, the nonexistence
involving the reference velocities normalized by(ty). Put-  of Bernstein-Greene-Kruskal equilibria for finité [22] en-

ting py, =Xwg(tp) andpy =Yywg(ty), one gets

sures that such an initial state cannot be an equilibrium state
for the wave-particle system so that this will be slightly de-

s=4|xy|(x?+y?) %2, (250  stabilized. Then the system naturally evolves due to its in-

trinsic stochasticity, as any lard¢- degrees of freedom

that is, an expression invariant with respecixte- —x and  Hamiltonian system. As for the two-particle system, we com-

y—-—y and ,y)—(y,x). Figure 3 shows the
stochasticity curve relative tg.=0.7.

iso- puted the finite{shory-time LLE and measured the number
of separatrix crossings by time unit as a function of the initial

This provides a rough qualitative bound on the borders ofvelocity. These two indicators are displayed in Fig. 4. We
the stochastic sea: a particle having its velocity a distance athecked that identical figures were obtained independently of
2wg (on spatial averagefrom the center of the resonance the (large enoughvalue ofA, namely, forA =25wg, and for
will only feel the wave in a perturbative way. One can thusA=12wg,, as is the case in Fig. 4. The bold dot-dashed
draw the KAM tori fixing this bound as the constant energycurve represents the rescaled number of separatrix crossings
lines having velocitiest 2wg at the positions of the hyper- by time unit experienced by all the particles having the initial
bolic points. Turning to velocity space representation insteadelocity py, as a function oy, during some initial stage. It
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particles far away from the resonance that is taken as refer-

| . ; .
0.12r ! i T ence. The main feature of interest provided by the LLE curve
“ohod is that the chaos ifon spatial averagamaximal at the bor-
011 i ‘ by ders of the resonance for particles that do not experience any
::. ) ‘, ;': separatrix crossings. That means that chaos is maximal in
0.081 i VA velocity regions surrounding the wave resonance where the
Iy I’ I . . .
! [T particles feel the wave but are too distant from the separatrix
0.061 | i to be trapped. We can check that this agrees with the quali-

tative boundary on strong chaos for theparticle system
written previously in the sense that if the modulus of the
velocity is larger than bg, there is no longer chadgsnly a
background finite-time level for the LDEAs the wave in-
tensity fluctuates, expressid@5) can only be qualitatively
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FIG. 4. Finite-(shor)-time LLE (thin line) and rescaled number V. FINAL DISCUSSION

of separatrix crossings by time unibold dot-dashed lineas a The previous numerical simulations agree with the long-
function of the rescaled initial velocitgo/wgo. Please note that, in gianging picture and understanding of the localization of
?;Segotgzglstgﬁy;)zz Egutrheé f/g?u:"g 2curve has been shifted towards,, 5 s around a resonance. But this has been almost exclu-
y - sively constructed up to now from a one or one-and-a-half
degrees of freedom prescribed pendulum Hamiltonian. The
turns out that this number is null fgr, outside the initial novelty of the results presented above is due to the IBrge-
wave resonance, but presents sharp peaks aret®dg,  self-consistent dynamics: the system evolves naturally from
and 2wg,. There is a third peak around the zero velocity thatone slightly out-of-equilibrium initial condition under its in-
can be associated with the particles lying initially close to thetrinsic stochasticity and the full self-consistent dynamics re-
x points. This fraction of particles compensates for theveals the locality of the interaction through the localization
trapped particles also having an initially null velocity that of chaos in velocity space. This study shows that the regions
shall remain trapped for long times. The percentage of paref the strongest chaos develop at the borders to the velocity
ticles experiencing separatrix crossings diminishespgs domain swept by the wave resonance. This should be taken
slightly departs from O as the fraction of particles that areinto account in the discrimination between resonant particles
trapped for long times increases. Actually, the plot of theand nonresonant ones, which can be absorbed in the adia-
mean number of separatrix crossings as a function of initiabatic treatment of the background plasma. Cutting the reso-
velocity in Fig. 4 is consistent with the fact that there is annant zone just at the wave resonance borders is too drastic a
increasing number of particles in the vicinity of the wave simplification and a larger velocity domain should be consid-
separatrix as the velocity increases from O up tasg The  ered. Actually, near-resonant particles make a major contri-
relative maximum aroung,=0 then signals that the region bution to the stochasticity of the system and may then be
of the x point is effectively the most active for the trapping/ thought to play a leading role in the decoherence process of
detrapping process. Those particles that undergo frequeiite wave. These results may be important in improving nu-
trappings and detrappings due to the fluctuations of the wavenerical mixed fluid/kinetic modelings of fusion plasmas dy-
amplitude may be transported to different velocities as theywamics where wave-particle interactions occur, suggesting
rotate with the wave. This provides the mechanism for vethat a kinetic treatment be extended up to near-resonant ve-
locity diffusion [23,24]. locity domains. This phenomenon may be related to the fact
Let us now consider the results obtained for the LLE as ahat the oscillations of the trapped particles in the large-
function of the initial momentunp,. As this is a finite-time  amplitude wave trough may destabilize sidebands to the trap-
estimate, even the LLE computed around an integrable mging frequency wgo. These trapped particles have been
tion will be nonzero. This just means that the relaxation ofshown to have a very regular motion so that they can act
the LLE towards zero is still processing. The mean levelcoherently. This phenomenon has also been observed during
attained by the LLE relaxing towards zero at the end of thehe nonlinear stage of the warm beam-wave instability in
computation is the one exhibited by large-velocity particlesRef.[24]. The generation of essentially the lowest harmonics
(with a modulus of the velocity larger thanwg,). This pro-  to the trapping frequency contributes to increasing the ther-
vides the level of reference for the LLE. One observes strongnalization of the wave-particle system in the vicinity of the
correlations between the LLE curve and the curve indicatingsingle-wave resonance domain.
the number of separatrix crossings as a functiomNofThe This study involves a single-wave model, which differs
contribution of particles close to the points explains the from the quasilinear approach involving the long-time fate of
relative extremum of the average LLE aroupg=0. For a continuum or large number of overlapping waves. The
particles having a modulus of initial velocity of about single-wave approximation, which is not addressed by the
1.5wgp, the LLE is minimal, that is, the average motion ex- quasilinear theory, has proved to be relevant in a variety of
perienced by those particles is even more regular than that ghysical situations where the dynamics is effectively domi-
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nated by a single mode. For instance, it was realized in reamong the modes and no global diffusion. Rather, this situ-

cent years that the understanding of the dynamics of a singlation reveals an intricate nonlinear behavior localized around

wave is of essential importance in the containment ofthe wave resonance that was little studied in the past.

charged fusion products in a tokamak. In this spirit, an evo-

lution equation for the wave amplitude of an unstable mode
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