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Velocity width of the resonant domain in wave-particle interaction
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Wave-particle interaction is a ubiquitous physical mechanism exhibiting locality in velocity space. A single-
wave Hamiltonian provides a rich model by which to study the self-consistent interaction between one elec-
trostatic wave andN quasiresonant particles. For the simplest nonintegrable Hamiltonian coupling two particles
to one wave, we analytically derive the particle velocity borders separating quasi-integrable motions from
chaotic ones. These estimates are fully retrieved through computation of the largest Lyapunov exponent. For
the large-N particle self-consistent case, we numerically investigate the localization of stochasticity in velocity
space and test a qualitative estimate of the borders of chaos.
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I. PHYSICAL CONTEXT AND INTRODUCTION
TO THE PROBLEM

Plasmas are, contrary to ordinary gases, compose
chargedparticles. They are thus sensitive to electromagn
fields and, moreover, behave similarly to sources genera
their own self-consistent fields. These fields may be Fou
decomposed into waves that propagate at specific phas
locities and interact with the so-called resonant partic
whose velocities are close to the phase velocities. This p
nomenon is calledwave-particle interaction~see, e.g.,@1#!. It
is ubiquitous in hot plasma physics and plays a major role
controlled thermonuclear fusion physics, in laser plasma
teraction, in astrophysics, as well as in semiconductors
electronic devices@2#. One of its features is that it exhibits
locality in the velocity space: since all plasma charged p
ticles do not interact in the same manner with the s
consistent fields, a fluid description would fail to describe
and a kinetic description is required. To illustrate this, let
consider Langmuir wave-particle interaction. This is the p
nomenon describing the~collisionless! interaction of long-
wavelength electrostatic waves with the resonant partic
namely, electrons whose velocities are close to the ph
velocities of the modes. Ions having masses far larger t
electron masses are assumed fixed and provide a neutra
background. The usual description of Langmuir wav
particle interaction involves then the coupled kinetic set
Vlasov-Poisson equations for the electron distribution fu
tion. In this framework, the locality of wave-particle intera
tion is evidenced for instance by Landau damping. As e
phasized mathematically by Landau’s rigorous calculat
@3#, this phenomenon is governed by resonant particles.

In order to describe precisely this Langmuir wave-parti
interaction and take into account these locality properties
alternativeN-body Hamiltonian model has been propos
@4#. This model results from a reduction of the dynamics
the whole plasma. Basically, the bulk particles~whose ve-
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locities are roughly smaller than the thermal velocity! only
participate in the dynamics via a small subset of collect
modes, the Langmuir~long-wavelength! modes of longitudi-
nal oscillation around their center guide positions. The
modes are described by action-angle variables (I j ,u j ) with
1< j <M for the M waves. In the absence of resonant p
ticles, they oscillate with constant angular frequenc
du j /dt5v0 j , which, according to the Bohm-Gross dispe
sion relation@5#, are approximately equal to the plasma fr
quency vP for long-wavelength modes@4#. These waves
strongly interact with those plasma particles in the tails
the distribution function having velocitiesv close tov0 j /kj .
The coupling is controlled by the small parameterh that
denotes the ratio of the tail density over the bulk plas
density. The dynamics ofN identical quasiresonant particle
moving on the interval of lengthL with periodic boundary
conditions, with unit mass and charge, and, respectively,
sition xr and momentumpr , interacting withM waves with
wave numberskj5 j 2p/L, derives then from the Hamil-
tonian

H5(
l 51

N pl
2

2
1(

j 51

M

v0 j I j2N21/2(
l 51

N

(
j 51

M

A2hI j

3cos~kjxl2u j !. ~1!

However, the discrimination between quasiresonant ‘‘r
evant’’ particles and particles that should be included in
plasma bulk, because they participate only marginally in
wave-particle interaction, is presently rather loose and qu
tative. For the simplest and most paradigmatic case of
single wave, it remains to determine in this self-consist
model, a picture of the various amounts of stochasticity
the velocity space and to try to estimate the width of t
stochastic sea developing around the wave resonance.
study of the localization of chaos in the phase space is
crucial to determining which particles should be taken in
account if one wishes to derive relevant Gibbs statistical m
chanics predictions@6# ~that agree with temporal average
due to a sufficient mixing in phase space!. Our aim in this
paper is to bring a semiquantitative resolve to this issue.
©2001 The American Physical Society11-1
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II. THE SINGLE-WAVE HAMILTONIAN

Let us introduce the self-consistent Hamiltonian coupl
N particles and one wave~with a unit wave number!

H5(
l 51

N pl
2

2
1v0I 2A2hI /N (

l 51

N

cos~xl2u!. ~2!

In order to fix notations, we put the wave number atj 51
and the spatial period atL52p. This single-wave Hamil-
tonian was first formulated as a simplified model to treat
instability due to a weak cold electron beam in a plasm
assuming a fixed ionic neutralizing background@7,8#. Yet
recently, different studies have extended the regime of ap
cation of the single-wave model to a much larger class
instabilities@9#, derived it in a generic manner from differen
contexts@10#, or proved it could model various physical ph
nomena ~e.g., Compton free-electron laser amplificati
@11#!. There exists a large variety of similar Hamiltonia
models~for instance, see reference@12#, for the description
of Alfvén-wave particle interaction!.

It is useful to write down the equation of motion of an
particle l as

ẍl52A2hI /N sin~xl2u!. ~3!

That is the equation of a pendulum evolving in the se
consistent field with strengthA2hI /N and angleu ~whose
temporal evolutions depend on the evolution of all the p
ticles!.

A Galilean transformation enables us to put the system
the reference frame of the wave. Actually, considering
generating functionF1(x,u,p̄, Ī ,t)5( l 51

N (xl2v0t) p̄l1(u

2v0t) Ī 1( l 51
N v0xl2Nv0

2t/2, the new Hamiltonian be
comes

H̄~ p̄, Ī ,x̄,ū !5H1
]F1

]t
5(

l 51

N
1

2
p̄l

22A2h Ī /N(
l 51

N

cos~ x̄l2 ū !.

~4!

It is easy to check that the total momentum

P̄5(
l 51

N

p̄l1 Ī ~5!

is conserved by the dynamics obtained from Eq.~4!. This
enables us to define a new generator asF2( x̄,ū,p,P̄)5 P̄ū

1( l 51
N pl( x̄l2 ū). The new coordinates conjugated to t

pl ’s are given byql5]F2 /]pl5 x̄l2 ū. The final Hamil-
tonian, emphasizing that onlyN degrees of freedom are e
fective, is given in the compact form

H~p,q!5(
l 51

N Fpl
2

2
2A2h/NS P̄2(

l 51

N

pl D 1/2

cosql G . ~6!

The wave-particle self-consistency manifests itself throug
coupling potential whose strength depends, in a mean-fi
way, on all particle velocities. This interaction is typical
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e
,

li-
f

-

r-

in
e

a
ld

wave-particle interaction and we shall investigate how t
particular form of coupling affects wave-particle locali
properties.

In this new form ~6!, it is clear that the self-consisten
interaction of two particles and one wave is the simpl
nonintegrable situation for the model. We shall first study
this case how self-consistency acts on velocity locality. T
case will provide a good illustration of how a velocity
dependent coupling affects the localization of chaos in vel
ity space. We shall see in Sec. IV that this study can, w
some restrictions, be relevant to the general problem of
interaction of a large numberN of particles with a single
wave. In that case, a numerical study is appropriate to e
mate the velocity domain in which particles play an acti
role in wave-particle interaction.

III. VELOCITY BORDERS OF CHAOS FOR THE
COUPLING OF TWO PARTICLES AND ONE WAVE

A. Local reduction to a one-and-a-half degrees of freedom
Hamiltonian system

The effective Hamiltonian in the reference frame of t
wave is

H~p,q!5
p1

2

2
1

p2
2

2
2Ah~ P̄2p12p2!1/2~cosq11cosq2!,

~7!

where one recalls thath is a small parameter. Therefore, w
shall consider the system as close to integrability. We den
by H0(p1 ,p2)5p1

2/21p2
2/2 the energy of the unperturbe

system and use the method developed by Escande
Doveil @13,14# to show that the system is locally reducible
a one-and-a-half degrees of freedom Hamiltonian system

This reduction operates in the vicinity of a reference p
of actions that we denote bypr5(p1r ,p2r). If the system
were integrable~without the perturbative potential part!, both
particles would move ballistically. When the perturbation
on, the effective dynamics can be proved to be reducible
one-and-a-half degrees of freedom as long as the veloc
of the two particles do not depart too much fromp1r and
p2r , which will be the case if they are far enough from th
wave resonance that their motion is only slightly affected
the wave. The key point explaining the local reduction of t
dynamics to one-and-a-half degrees of freedom is that, in
vicinity of pr , the energy circle H0(p1r ,p2r)[Er
5H0(p1 ,p2) is similar to a parabolic branch. In order t
move the system to the reference frame with originpr ori-
ented according to the principal axes of the parabola, w
vectorsVr and r defined through

Vr5
]H0

]p U
p5pr

5S p1r

p2r
D 5pr ~8!

and r•Vr50 with ipr i5ir i5(2Er)
1/2 so that

r5S p2r

2p1r
D , ~9!
1-2
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one has to operate one translation in momentum space,
lowed by one rotation of the initial Cartesian referen
frame, that is, a unitary transform. This defines a canon
transform of the original variables (p,q) towards the new
variables (p8,q8) with the generating function

F~q,p8!5q•~pr1p18r1p28Vr !. ~10!

This gives

p5
]F

]q
5pr1p18r1p28Vr ,

q185
]F

]p18
5p2rq12p1rq2 ,

q285
]F

]p28
5p1rq11p2rq2 .

The new Hamiltonian then reads

H̃~p8,q8!5Er1Er~p18
212p281p28

2!2Ah@ P̄2p1r

3~12p181p28!2p2r~11p181p28!#1/2

3FcosS p2rq181p1rq28

2Er
D 1cosS p1rq182p2rq28

2Er
D G .

Locally, that is, in the vicinity of the reference actionpr , one
can neglectp28

2 compared to 2p28 , as well as6p181p28 com-
pared to 1 in the potential strength term. Under these co
tions, q28 depends linearly on time, since its derivativeq̇28 is
then equal to 2Er , that is to a constant. Therefore, on th
restricted phase spaceS1 associated with the first particle
the dynamics corresponds to a one-and-a-half degree
freedom Hamiltonian one, that is formally the dynamics e
hibited by the two-wave paradigmatic Hamiltonian defin
in Ref. @14#. Actually, by changing time origin throught9
5t2t0, one obtainsq2852Ert9. Moreover, considering the
canonical transform defined by the generator

F3~q18 ,p19!5
1

2Er
q18p192~Er12Erp28!t9 ~11!

gives

q195
]F3

]p19
5

1

2Er
q18 ,

p185
]F3

]q18
5

1

2Er
p19 .

The expression of the new Hamiltonian is then
01641
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H9~q19 ,p19 ,t9!5H1
]F3

]t9

5
1

4Er
p19

22Ah~ P̄2p1r2p2r !
1/2

3@cos~p2rq191p1r t9!

1cos~p1rq192p2r t9!#.

A change of scale~noncanonical transform! enables us to
obtain the normalized expression of the paradigm Ham
tonian with two waves. Actually, puttingy1ªp19/(2Er), the
couple (q19 ,y1) evolves then inS1 according to

q̇195
]K

]y1
~12!

and

ẏ152
]K

]q19
, ~13!

with

K5
1

2
y1

22
Ah~ P̄2p1r2p2r !

1/2

2Er
@cos~p2rq191p1r t9!

1cos~p1rq192p2r t9!#. ~14!

One identifies here two resonances whose locations are g
by the condition of stationary phase: the first one is cente
on the momentum2p1r /p2r ~phase velocity of the first
wave if it is alone! and the second one onp2r /p1r ~phase
velocity of the second wave if it is alone!.

B. Stochasticity in the reduced system

Let us now recall the definition of Chirikov stochastici
parameters @15#. It is defined by the ratio of the sumd1
1d2 of the maximum half widths of two neighboring reso
nances over the distance in velocity spacel between both
resonances inS1. When s!1, the two resonances are we
separated from each other by a layer of invariant cur
@Kol’mogorov-Arnol’d-Moser~KAM ! tori#. According to the
initial conditions, a particle in model~14! will either be
trapped in the first or second wave or move on a pass
KAM torus. The qualitative overlapping criterions*1, pro-
posed by Chirikov@15#, corresponds to the onset of stron
chaos. A treatment based on a renormalization group the
@13# has enabled us to fix a quantitative thresholdsc ,
roughly equal to 0.7, for the disappearance of the last KA
torus between the resonances that marks the onset of
large-scale chaos.

For Eq. ~14!, one gets d15d252h1/4( P̄2p1r
2p2r)

1/4(2Er)
2(1/2). In addition, the two resonances a

separated in the velocity space ofS1 by a length l
5up2r /p1r1p1r /p2r u. The stochasticity parameter is ther
fore equal to
1-3
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MARIE-CHRISTINE FIRPO AND FABRICE DOVEIL PHYSICAL REVIEW E65 016411
s5s~p1r ,p2r !54h1/4~ P̄2p1r2p2r !
1/4

up1rp2r u

~p1r
2 1p2r

2 !3/2
.

~15!

Figure 1 represents different curves satisfyings(p1r ,p2r)
5const. The external thick curve corresponds to the crit
valuesc;0.7. Along the bisectrix, the chaos increases as
gets closer to the origin. It is important to note that th
expression does not involve the positions of the particles
only their reference velocities, as a consequence of
Hamiltonian form~6!.

Let us now interpret this figure by starting from a situ
tion of quasi-integrability forH. It is obvious thatP̄2p1r
2p2r must be positive, and that around the reference c
figuration P̄2p1r2p2r50, the motion of both particles is
quasiballistic: this fixes the ‘‘integrability border’’ drawn i
Fig. 1. In this extreme case, the dynamics will be even
ducible to a one single degree of freedom~i.e., integrable!
system. It is clear that if one provides initially one partic
with a large momentum (p1r& P̄), then the width of wave
resonance~‘‘cat’s eye’’! will be small: the reference reso
nance half width will actually be 2vBr52h1/4( P̄2p1r
2p2r)

1/4 and will be small compared top1r . The motion of
the first particle will then almost coincide with a KAM torus
Also, if one moves along the first separatrix in the oppos
direction, starting from reference momenta having la
~compared toP̄! negative values, thenp1r is large in front of
the trapping angular frequencyh1/4( P̄2p1r2p2r)

1/4, that is,
of orderh1/4(2p1r)

1/4. This situation corresponds also to a
almost integrable motion of the particles. It is interesting
note that Eq.~15! is obviously symmetric with respect to th

FIG. 1. Curves of isostochasticitys(p1r ,p2r)50.7 ~bold line!
and s(p1r ,p2r)51.5 ~thin line! for the approximated system cou
pling two particles to one wave. The integrability linep1r1p2r

5 P̄ has been drawn. Valuesh52.5631024 and P̄51 have been
used.
01641
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transformation (p1r ,p2r)°(p2r ,p1r), that is, the simple in-
version of the two particles, but that it is not invariant by t
transformationsp1r°2p1r and p2r°2p2r nor by their
composition. On the first bisectrix, there is actually a sma
velocity range of strong chaos for positive than for negat
velocity values forP̄ positive. According to expression~15!,
the Chirikov parameter should diverge as (p1r ,p2r)→(0,0).
As Eq. ~15! is independent of particle position, this simp
signals the existence of the resonance hyperbolic point
zero momentum. These dominate the stochastic behavio
the system on the line of zero momentum.

It is important to note that this reduction of dynamics
only locally valid: with given reference momenta (p1r ,p2r)
at time t0, this reduction will typically be valid up to some
time t01t at which the hypothesisp28

2!2p28 breaks down.
At that time, a new reduction treatment could be made fo
new reference couple. This method has been used by
candeet al. @16# for a nearest-neighbors Hamiltonian mod
of rotators. They showed that the existence of at least
such 1.5 degrees of freedom’s active resonance was s
cient to sweep phase space and to provide good relaxa
properties of the microscopic microcanonical dynamics
wards Gibbs equilibrium.

C. Largest Lyapunov exponent

The largest Lyapunov exponent~LLE! @17# measures the
average degree of chaoticity exhibited by a generic nonin
grable Hamiltonian system.

Consider the equations of motion associated with a gi
N-dimensional dynamical system defined as

ẋi5Xi~x1, . . . ,xN!, ~16!

where 1< i<N, and such thatx(t50)[x0, and consider the
evolution of a phase-space point initially arbitrarily close
dx0 to the latter one. Then linearizing~16! around the refer-
ence trajectoryxR(t) gives the usual tangent equations

d ẋi5Jk
i @xR~ t !#dxk , ~17!

where theJk
i @xR(t)# stand for the Jacobian matrix time

dependent elements related to theXi .
Then the limit

lim
t→`

1

t
ln

idxti
idx0i ~18!

is proved to exist~by the Oseledec theorem! and is, by defi-
nition, equal to the largest Lyapunov exponent, denotedl1,
whose value depends on the ergodic component to which
initial reference condition belongs. Since generally the Ja
bian matrices~17! at different times do not commute, on
cannot find a common system of eigenvectors, so that u
estimations of the LLE rely on numerical simulations th
integrate Eq.~17! around given reference trajectories, with
few remarkable analytical estimations@18#.

For our purpose, we shall only compute the positi
Lyapunov exponent associated with the effective one-an
1-4



r
n
u
a-

it

.

r-

sl

x
ca
te
di
o

to

ar
ill

nc
al

in
du
-a

re
si-

al

he
-
st
the
LE
eri-
with
n:
r a
2.

eld

ose
e-

r
o-
te-
he
sing
, for

wo
to

VELOCITY WIDTH OF THE RESONANT DOMAIN IN . . . PHYSICAL REVIEW E65 016411
half degrees of freedom dynamics appearing in Eq.~3! and
use the method developed by Habib and Ryne@19#. This
method based on the use of symplectic matrices only
quires that the linearized dynamics be Hamiltonian a
avoids reorthonormalization processes. Linearizing the eq
tion of motion ~3! of a test particle around a reference tr
jectory xR(t) yields the system

d ẋ5dp, ~19!

d ṗ52«bA2I ~ t !cos@xR~ t !2u~ t !#dx.

These equations derive from a quadratic Hamiltonian w
1.5 degrees of freedom of the formH(dp,dx,t)
ª1/2(s11dx21s12dxdp1s21dpdx1s22dp2) with s125s21
50 and

s115«bA2I ~ t !cos@xR~ t !2u~ t !#,

s2251.

In order to obtainl1, it is sufficient to solve instead of Eqs
~19! the first-order differential equation system

dm

dt
5

1

2
~s222s11!cosa,

da

dt
5s111s222~s222s11!sina cothm ~20!

simultaneously with the reference trajectoryxR(t), wave in-
tensity I (t), and phaseu(t) that are extracted from the pa
allel fourth-order symplectic integration@20# of the full self-
consistent Hamiltonian system~2!.

The LLE is then given by

l15 lim
t→`

m~ t !

t
. ~21!

Let us note that, in numerical simulations, we shall obviou
only compute finite-~large!-time LLE.

Through the LLE, which is an indicator of the chaos e
perienced by microscopic dynamics, we look for a dynami
signature of the onset of strong stochasticity in the sys
coupling two particles and one wave. For the initial con
tions, we restrict ourselves to the symmetric case where b
particles have initially the same velocityp05p105p20 with
arbitrary positions. This corresponds to investigating the s
chasticity along the bisectrixp1r5p2r in Fig. 1. Actually,
assume first that the initial velocity of the particles is f
away from the origin. Then the motion of the particles w
be almost ballistic and the local reduction to Eq.~14! will be
valid for almost infinite time withp1r5p2r5p0. This will
correspond to a vanishing LLE calculated for the refere
trajectory given by an initial arbitrary position and an initi
velocity p05p105p20. As the initial velocity of both par-
ticles gets closer to the origin, we expect a continuous
crease of chaos in the system so that the condition of re
tion, around this reference initial condition, to a one-and
01641
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half degrees of freedom Hamiltonianp28
2!2p28, remains

valid only during shorter and shorter periods of time. Figu
2 presents the LLE, averaged over 100 different initial po
tions for both particles, computed through Eqs.~20! and~21!
around the trajectory of one particle with arbitrary initi
position and initial velocityp05p105p20. We can check
that the integrable initial conditionp05 P̄/2 leads to a van-
ishing LLE. Moreover, we observe that the behavior of t
LLE dramatically changes asp0 approaches the origin, rais
ing from zero to a finite value, for velocity values on the fir
bisectrix intersecting the isostochasticity curve marking
strong stochasticity threshold in Fig. 1. The use of the L
provides a new signature of the nature of the chaos exp
enced by the system. One observes that, consistently
Fig. 1, Fig. 2 is not symmetric with respect to the origi
since P̄ has been taken positive, strong chaos arises fo
larger velocity modulus at the left than at the right of Fig.

IV. LOCALITY OF THE INTERACTION OF N PARTICLES
WITH ONE WAVE

A. Rough estimate of the velocity borders of stochasticity

The two-particle case cannot emphasize the mean-fi
nature of the self-consistent potential. WhenN is large, one
can still try to isolate two degrees of freedom among theN
degrees of freedom of the full system. In this matter, supp
that theseN particles have a large enough extension in v
locity ~i.e., they form a warm beam! that one can conside
among them two ‘‘boundary’’ particles remote from the res
nance cat’s eye. Their motion will therefore be almost in
grable. One can try to estimate the velocity width of t
stochastic domain, surrounding the wave resonance, by u
the approach developed previously, in a rigorous manner
the two-particle case.

Let us assume that, within some time interval@ t0 ;t01t#,
the energy of the system may be approximated by

H~p,q!5h1,2~p1 ,p2 ,q1 ,q2 ,t0!1(
l 53

N Fpl
2

2
2A2h

N

3S P̄2(
l 53

N

pl2p1~ t0!2p2~ t0!D 1/2

cosql G

FIG. 2. Largest Lyapunov exponent for the system coupling t
particles to one wave. Arrows mark the velocities corresponding
the value of the stochasticitys50.55 as calculated from Eq.~15! on
the bisectrix, i.e., withp1r5p2r .
1-5
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with

h1,2~p1 ,p2 ,q1 ,q2 ,t0!5
p1

2

2
1

p2
2

2
2A2h

N S P̄2(
l 53

N

pl~ t0!

2p12p2D 1/2

~cosq11cosq2!.

At t5t0, this separation is exact. This separation will
valid, during a sufficiently long rtime intervalt, provided the
variations of the wave amplitude~or, equivalently, of the
mean-field velocity coupling! are small, which is consisten
with an almost integrable state of the system. As before
order that the dynamics generated byh1,2 be locally reduc-
ible to one-and-a-half degrees of freedom, the potential
ergy term has to be a small pertubation of the kinetic te
We need here the assumption of a sufficiently warm be
ensuring the existence of at least two particles far eno
away from the cat’s eye. Then the previous procedure app
and gives the stochasticity parameter

s~ t0!54S 2h

N D 1/4S P̄2(
l 53

N

pl~ t0!2p1r2p2r D 1/4

3
up1rp2r u

~p1r
2 1p2r

2 !3/2
. ~22!

In the mean-field largeN limit, the wave intensity is of order
N @21# so that, according to Eq.~5!, the following inequali-
ties can be easily satisfied:

~2h/N!1/4S P̄2(
l 53

N

pl~ t0!D 1/4

,up1r u,up2r u! P̄2(
l 53

N

pl~ t0!.

~23!

One can then define the trapping frequency as

vB~ t0!.~2h/N!1/4S P̄2(
l 53

N

pl~ t0!2p1r2p2r D 1/4

,

~24!

and one obtains an expression of the stochasticity param
involving the reference velocities normalized byvB(t0). Put-
ting p1r5xvB(t0) andp2r5yvB(t0), one gets

s54uxyu~x21y2!23/2, ~25!

that is, an expression invariant with respect tox°2x and
y°2y and (x,y)°(y,x). Figure 3 shows the iso
stochasticity curve relative tosc50.7.

This provides a rough qualitative bound on the borders
the stochastic sea: a particle having its velocity a distanc
2vB ~on spatial average! from the center of the resonanc
will only feel the wave in a perturbative way. One can th
draw the KAM tori fixing this bound as the constant ener
lines having velocities62vB at the positions of the hyper
bolic points. Turning to velocity space representation inst
01641
in

n-
.

m
h

es

ter

f
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d

of the energy representation, this means that there shoul
no particle undergoing strong chaos outside an 8vB-width
domain around the origin.

B. Numerical cartography of the stochasticity in velocity space

We numerically investigate the local stochasticity in v
locity space that develops from an initially almost integrab
state. At initial time, particles are distributed on veloci
beams, uniformly in space, with a flat velocity distributio
function, i.e., we start from water-bag initial conditions a
the wave has a finite amplitude such that the initial resona
cat’s eye has a half width equal to 2vB0. More precisely, we
initially distribute the particles according to the distributio
function

f 0~x,v !5H 1/~4pD! if 2D<v<D

0 otherwise,
~26!

where the velocity half widthD is equal to about 12vB0 in
the simulations we present. Actually, in order to measure
extension of stochasticity in the velocity space, one has
chooseD sufficiently large compared to the resonance h
width. As the number of particles is finite, the nonexisten
of Bernstein-Greene-Kruskal equilibria for finiteN @22# en-
sures that such an initial state cannot be an equilibrium s
for the wave-particle system so that this will be slightly d
stabilized. Then the system naturally evolves due to its
trinsic stochasticity, as any large-N degrees of freedom
Hamiltonian system. As for the two-particle system, we co
puted the finite-~short!-time LLE and measured the numbe
of separatrix crossings by time unit as a function of the init
velocity. These two indicators are displayed in Fig. 4. W
checked that identical figures were obtained independentl
the~large enough! value ofD, namely, forD525vB0 and for
D512vB0, as is the case in Fig. 4. The bold dot-dash
curve represents the rescaled number of separatrix cross
by time unit experienced by all the particles having the init
velocity p0, as a function ofp0, during some initial stage. I

FIG. 3. Curve of isostochasticitys(x,y)50.7 for the reduced
quasi-integrable system couplingN particles to one wave.
1-6
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turns out that this number is null forp0 outside the initial
wave resonance, but presents sharp peaks around22vB0
and 2vB0. There is a third peak around the zero velocity th
can be associated with the particles lying initially close to
x points. This fraction of particles compensates for t
trapped particles also having an initially null velocity th
shall remain trapped for long times. The percentage of p
ticles experiencing separatrix crossings diminishes asp0
slightly departs from 0 as the fraction of particles that a
trapped for long times increases. Actually, the plot of t
mean number of separatrix crossings as a function of in
velocity in Fig. 4 is consistent with the fact that there is
increasing number of particles in the vicinity of the wa
separatrix as the velocity increases from 0 up to 2vB0. The
relative maximum aroundp050 then signals that the regio
of the x point is effectively the most active for the trappin
detrapping process. Those particles that undergo freq
trappings and detrappings due to the fluctuations of the w
amplitude may be transported to different velocities as t
rotate with the wave. This provides the mechanism for
locity diffusion @23,24#.

Let us now consider the results obtained for the LLE a
function of the initial momentump0. As this is a finite-time
estimate, even the LLE computed around an integrable
tion will be nonzero. This just means that the relaxation
the LLE towards zero is still processing. The mean le
attained by the LLE relaxing towards zero at the end of
computation is the one exhibited by large-velocity partic
~with a modulus of the velocity larger than 5vB0). This pro-
vides the level of reference for the LLE. One observes str
correlations between the LLE curve and the curve indicat
the number of separatrix crossings as a function ofN. The
contribution of particles close to thex points explains the
relative extremum of the average LLE aroundp050. For
particles having a modulus of initial velocity of abo
1.5vB0, the LLE is minimal, that is, the average motion e
perienced by those particles is even more regular than th

FIG. 4. Finite-~short!-time LLE ~thin line! and rescaled numbe
of separatrix crossings by time unit~bold dot-dashed line! as a
function of the rescaled initial velocityp0 /vB0. Please note that, in
order to clarify the figure, the LLE curve has been shifted towa
the horizontal axis by the value 0.2.
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particles far away from the resonance that is taken as re
ence. The main feature of interest provided by the LLE cu
is that the chaos is~on spatial average! maximal at the bor-
ders of the resonance for particles that do not experience
separatrix crossings. That means that chaos is maxima
velocity regions surrounding the wave resonance where
particles feel the wave but are too distant from the separa
to be trapped. We can check that this agrees with the qu
tative boundary on strong chaos for theN-particle system
written previously in the sense that if the modulus of t
velocity is larger than 5vB0 there is no longer chaos~only a
background finite-time level for the LLE!. As the wave in-
tensity fluctuates, expression~25! can only be qualitatively
applied.

V. FINAL DISCUSSION

The previous numerical simulations agree with the lon
standing picture and understanding of the localization
chaos around a resonance. But this has been almost e
sively constructed up to now from a one or one-and-a-h
degrees of freedom prescribed pendulum Hamiltonian. T
novelty of the results presented above is due to the largN
self-consistent dynamics: the system evolves naturally fr
one slightly out-of-equilibrium initial condition under its in
trinsic stochasticity and the full self-consistent dynamics
veals the locality of the interaction through the localizati
of chaos in velocity space. This study shows that the regi
of the strongest chaos develop at the borders to the velo
domain swept by the wave resonance. This should be ta
into account in the discrimination between resonant partic
and nonresonant ones, which can be absorbed in the a
batic treatment of the background plasma. Cutting the re
nant zone just at the wave resonance borders is too dras
simplification and a larger velocity domain should be cons
ered. Actually, near-resonant particles make a major con
bution to the stochasticity of the system and may then
thought to play a leading role in the decoherence proces
the wave. These results may be important in improving
merical mixed fluid/kinetic modelings of fusion plasmas d
namics where wave-particle interactions occur, sugges
that a kinetic treatment be extended up to near-resonan
locity domains. This phenomenon may be related to the
that the oscillations of the trapped particles in the larg
amplitude wave trough may destabilize sidebands to the t
ping frequencyvB0. These trapped particles have be
shown to have a very regular motion so that they can
coherently. This phenomenon has also been observed du
the nonlinear stage of the warm beam-wave instability
Ref. @24#. The generation of essentially the lowest harmon
to the trapping frequency contributes to increasing the th
malization of the wave-particle system in the vicinity of th
single-wave resonance domain.

This study involves a single-wave model, which diffe
from the quasilinear approach involving the long-time fate
a continuum or large number of overlapping waves. T
single-wave approximation, which is not addressed by
quasilinear theory, has proved to be relevant in a variety
physical situations where the dynamics is effectively dom

s

1-7
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nated by a single mode. For instance, it was realized in
cent years that the understanding of the dynamics of a si
wave is of essential importance in the containment
charged fusion products in a tokamak. In this spirit, an e
lution equation for the wave amplitude of an unstable mo
near marginal stability, where resonant wave-particle inter
tion is balanced by collision relaxation processes, was p
posed by the authors of Refs.@25# and later shown to be
consistent with experimental data, obtained on the JET to
mak, of kinetic instabilities in Alfve´n wave-particle interac-
tion @26#.

The above study of the localization of chaos in the sing
wave collisionless model complements the usual quasilin
treatment in situations where there is no large-scale trans
9
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among the modes and no global diffusion. Rather, this s
ation reveals an intricate nonlinear behavior localized aro
the wave resonance that was little studied in the past.
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